Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37224145

RESUMO

Laundering of textiles is a significant source of waterborne microfiber pollution, and solutions are now being sought to mitigate this issue including improvements in clothing technology and integration of filtration systems into washing machines. Vented tumble dryers are a potential source of airborne microfiber pollution, as their built-in lint filtration systems have been found to be inefficient with significant quantities of textile microfibers being released to the external environment through their exhaust air ducts. The present study is the first to evaluate the impact of condenser dryers, finding that they are significant contributors to waterborne microfiber pollution from the lint filter (if users clean this with water), the condenser and the condensed water. Microfiber release from drying of real consumer loads in condenser and vented tumble dryers was compared, finding that real loads release surprisingly high levels of microfibers (total 341.5 ± 126.0 ppm for those dried in a condenser dryer and 256.0 ± 74.2 ppm for those dried in a vented dryer), similar in quantity to microfibers produced during the first highly-shedding drying cycle of a new T-shirt load (total 321.4 ± 11.2 ppm) in a condenser dryer. Vented dryers were found to be significant contributors to waterborne microfiber pollution if consumers clean the lint filter with water in accordance with some published appliance usage instructions, as most (86.1 ± 5.5% for the real consumer loads tested) of the microfibers generated during vented tumble drying were collected on the lint filter. Therefore, tumble dryers are a significant source of waterborne and (for vented dryers) airborne microfiber pollution. While reducing the pore size of tumble dryer lint filters and instructing consumers to dispose of fibers collected on lint filters as municipal solid waste could help reduce the issue, more sophisticated engineering solutions will likely be required to achieve a more comprehensive solution.


Assuntos
Dessecação , Poluição Ambiental , Engenharia , Resíduos Sólidos , Água
2.
Sci Rep ; 11(1): 21542, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728780

RESUMO

Washed textiles can remain malodorous and dingy due to the recalcitrance of soils. Recent work has found that 'invisible' soils such as microbial extracellular DNA (eDNA) play a key role in the adhesion of extracellular polymeric substances that form matrixes contributing to these undesirable characteristics. Here we report the application of an immunostaining method to illustrate the cleaning mechanism of a nuclease (DNase I) acting upon eDNA. Extending previous work that established a key role for eDNA in anchoring these soil matrixes, this work provides new insights into the presence and effective removal of eDNA deposited on fabrics using high-resolution in-situ imaging. Using a monoclonal antibody specific to Z-DNA, we showed that when fabrics are washed with DNase I, the incidence of microbial eDNA is reduced. As well as a quantitative reduction in microbial eDNA, the deep cleaning benefits of this enzyme are shown using confocal microscopy and imaging analysis of T-shirt fibers. To the best of our knowledge, this is the first time the use of a molecular probe has been leveraged for fabric and homecare-related R&D to visualize eDNA and evaluate its removal from textiles by a new-to-laundry DNase enzyme. The approaches described in the current work also have scope for re-application to identify further cleaning technology.


Assuntos
Bactérias/metabolismo , Aderência Bacteriana , DNA Bacteriano/isolamento & purificação , Desoxirribonuclease I/metabolismo , Vesículas Extracelulares/metabolismo , Imagem Molecular/métodos , Têxteis/análise , DNA Bacteriano/metabolismo , Têxteis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...